Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing

نویسندگان

  • D. C. Lund
  • J. F. Adkins
  • R. Ferrari
چکیده

[1] The ocean’s role in regulating atmospheric carbon dioxide on glacial‐interglacial timescales remains an unresolved issue in paleoclimatology. Reduced mixing between deep water masses may have aided oceanic storage of atmospheric CO2 during the Last Glacial Maximum (LGM), but data supporting this idea have remained elusive. The dC of benthic foraminifera indicate the Atlantic Ocean was more chemically stratified during the LGM, but the nonconservative nature of dC complicates interpretation of the LGM signal. Here we use benthic foraminiferal dO as a conservative tracer to constrain the ratio of meridional transport to vertical diffusivity in the deep Atlantic. Our calculations suggest that the ratio was at least twice as large at the LGM. We speculate that the primary cause was reduced mixing between northern and southern component waters, associated with movement of this water mass boundary away from the zone of intense mixing near the seafloor. The shallower water mass boundary yields an order of magnitude increase in the volume of southern component water, suggesting its residence time may have increased substantially. Our analysis supports the idea that an expanded volume of Antarctic Bottom Water and limited vertical mixing enhanced the abyssal ocean’s ability to trap carbon during glacial times.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refining the stable isotope budget for Antarctic Bottom Water: New foraminiferal data from the abyssal southwest Atlantic

[1] Stable isotope tracer budget results suggest the transport to vertical diffusivity ratio for Antarctic Bottom Water (AABW) in the Atlantic was higher at the Last Glacial Maximum (LGM). Reduced mixing across the upper boundary of AABW is consistent with movement of this surface away from the seafloor and may be a factor in sequestering CO2 in the abyssal Atlantic. Two key unknowns in the bud...

متن کامل

Meridional circulation during the Last Glacial Maximum explored through a combination of South Atlantic dO observations and a geostrophic inverse model

[1] The vertical profile of meridional transport in the South Atlantic is examined by combining paleoceanographic observations with a geostrophic circulation model using an inverse method. dOcalcite observations along the margins of the South Atlantic show that upper-ocean cross-basin differences were weaker during the Last Glacial Maximum (LGM) than the Holocene. The dOcalcite observations can...

متن کامل

Influence of atmospheric circulation patterns on dust transport during Harmattan Period in West Africa

This study has used TOMS AI as well as the reanalysis dataset of thirty-four years (1979-2012) to investigate the influence of atmospheric circulation on dust transport during the Harmattan period in West Africa, using Aerosol Index (AI) data, obtained from various satellite sensors. Changes in Inter-Tropical Discontinuity (ITD), Sea Surface Temperature (SST) over the Gulf of Guinea, and North ...

متن کامل

North Atlantic Deep Water Production during the Last Glacial Maximum

Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011